Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe
 
research article

Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe

Schaller, Benoît  
•
Xin, Lijing  
•
Gruetter, Rolf  
2014
Magnetic Resonance in Medicine

Purpose The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE 1H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. Methods The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. Results White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB < 20%) with relatively small concentration differences (< 0.3 μmol/g), except Glu (± 0.8 μmol/g). Conclusion Given the small quantification differences, we conclude that a general macromolecule baseline provides a sufficiently accurate neurochemical profile in occipital lobe at 7T in healthy human brain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

schaller_MM7T_MRM_2014.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

343.83 KB

Format

Adobe PDF

Checksum (MD5)

6bda744a2f8fafd92920315d4abab980

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés