Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Dynamic Prediction based Scheduling for TM
 
master thesis

Dynamic Prediction based Scheduling for TM

Tomar, Anmol
2008

Transactional memory (TM) provides an intuitive and simple way of writing parallel programs. TMs execute parallel programs speculatively and deliver better performance than conventional lock based parallel programs. However, in certain scenarios when an application lacks scope for parallelism, TMs are outperformed by conventional fine-grained locking. TM schedulers, which serialize transactions that face contention, have shown promise in improving performance of TMs in such scenarios. In this thesis, we develop a Dynamic Prediction based Scheduler (DPS) that exploits novel prediction techniques, like temporal locality and locality of access across repeated transactions. DPS predicts the access sets of future transactions based on the access patterns of the past transactions of the individual threads. We also propose a novel heuristic, called serialization affinity, which tends to serialize transactions with a probability proportional to the current amount of contention. Using the information of the currently executing transactions, the current amount of contention, and the predicted access sets, DPS dynamically serializes transactions to minimize conflicts. We implement DPS in two state-of-the-art STMs, SwissTM and TinySTM. Our results show that in scenarios where the number of threads is higher than the number of cores, DPS improves the performance of these STMs by up to 55% and 3000% respectively. On the other hand, the overhead of prediction techniques in DPS causes a performance degradation of just 5-8% in some cases, when the number of threads is less than the number of cores.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AnmolMasterThesis.pdf

Access type

openaccess

Size

613.07 KB

Format

Adobe PDF

Checksum (MD5)

b74f3424f7eda5c61caa01ae2a2a023e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés