Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microlever with combined integrated sensor/actuator functions for scanning force microscopy
 
research article

Microlever with combined integrated sensor/actuator functions for scanning force microscopy

Brugger, J  
•
Blanc, N.
•
Renaud, Ph.
Show more
1994
Sensors and Actuators A: Physical

A novel silicon microfabricated sensor head for the scanning force microscope (SFM) is presented. The force sensor consists of a cantilever and an adjacent counter-electrode forming the two plates of a capacitor. Force-induced cantilever deflections are monitored by capacitive detection. Typical lever dimensions of 800 um x 40 um and a gap of 3 um yield an active sensing capacitance C=O.l pF. The expected sensitivity in terms of vertical cantilever motion is dC/dz=10 fF/m. In addition to the sensing capability, the microlever can also be z-actuated by applying controlled voltages. This allows both the tip-to-sample distance and the cantilever/system compliance to be adjusted. Expressions are derived for the amplitude of cantilever deflections under electrostatic actuation in the static and dynamic modes as pertinent to applications of SFM in the contact and non-contact modes. The microlever is fabricated using silicon bulk- and surface-micromachining techniques including fusion bonding and sacrificial layer etching. First measurements of the static and dynamic deflections of cantilevers are analysed and show promising results. The reported device basically represents a module of an SFM microsystem with integrated cantilever deflection sensor and adjustment capability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Brugger_1994_SAA.pdf

Access type

openaccess

Size

639 KB

Format

Adobe PDF

Checksum (MD5)

47d8558befcc078c7be9fdb62723bc3b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés