Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generation of Native, Untagged Huntingtin Exon1 Monomer and Fibrils Using a SUMO Fusion Strategy
 
research article

Generation of Native, Untagged Huntingtin Exon1 Monomer and Fibrils Using a SUMO Fusion Strategy

Reif, Andreas  
•
Chiki, Anass  
•
Ricci, Jonathan  
Show more
March 29, 2018
Journal of Visualized Experiments

Huntington’s Disease (HD) is an inherited fatal neurodegenerative disease caused by a CAG expansion (36) in the first exon of the HD gene, resulting in the expression of the Huntingtin protein (Htt) or N-terminal fragments thereof with an expanded polyglutamine (polyQ) stretch. The exon1 of the Huntingtin protein (Httex1) is the smallest Htt fragment that recapitulates many of the features of HD in cellular and animal models and is one of the most widely studied fragments of Htt. The small size of Httex1 makes it experimentally more amenable to biophysical characterization using standard and high-resolution techniques in comparison to longer fragments or full-length Htt. However, the high aggregation propensity of mutant Httex1 (mHttex1) with increased polyQ content ( 42) has made it difficult to develop efficient expression and purification systems to produce these proteins in sufficient quantities and make them accessible to scientists from different disciplines without the use of fusion proteins or other strategies that alter the native sequence of the protein. We present here a robust and optimized method for the production of milligram quantities of native, tag-free Httex1 based on the transient fusion of small ubiquitin related modifier (SUMO). The simplicity and efficiency of our strategy will eliminate the need to use non-native sequences of Httex1, thus making this protein more accessible to researchers and improving the reproducibility 45 of experiments across different laboratories. We believe that these advances will also facilitate future studies aimed at elucidating the structure-function relationship of Htt as well as developing novel diagnostic tools and therapies to treat or slow the progression of HD.

  • Details
  • Metrics
Type
research article
DOI
10.3791/57506
Author(s)
Reif, Andreas  
Chiki, Anass  
Ricci, Jonathan  
Lashuel, Hilal  
Date Issued

2018-03-29

Published in
Journal of Visualized Experiments
Issue

136

Article Number

e57506

Subjects

HD

•

Huntington’s disease

•

huntingtin

•

neurodegeneration

•

polyglutamine

•

polyQ

•

aggregation

•

fibrils

•

SUMO fusion technology

•

protein expression and purification

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMNN  
Available on Infoscience
March 29, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/145829
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés