Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Nonequilibrium Dynamics of Collective Excitations in Strongly Interacting and Correlated Quantum Systems
 
doctoral thesis

Nonequilibrium Dynamics of Collective Excitations in Strongly Interacting and Correlated Quantum Systems

Baldini, Edoardo  
2017

Revealing the emergence and the dynamics of collective excitations in complex matter is a subject of pivotal importance, as it provides insight into the strength and spatial distribution of interactions and correlations. At the same time, collectivity lies at the origin of several cooperative phenomena in many-body systems, which can lead to profound transformations, instabilities and, eventually, phase transitions. Mapping the interactions of the collective bosonic excitations with the fermionic particles and among themselves leads to the comprehension of the many-body problem. In this Thesis, we investigate the dynamics of collective excitations in strongly interacting and correlated systems by means of ultrafast broadband optical spectroscopy. Within this approach, a material is set out-of-equilibrium by an ultrashort laser pulse and the photoinduced changes in its optical properties are subsequently monitored with a delayed probe pulse, covering a broad spectral region in the visible or in the ultraviolet. Collective excitations can be unraveled either in the frequency domain as spectral features across the probed range or in the time domain as coherent modes triggered by the pump pulse. Studying the renormalization and temporal evolution of these collective excitations gives access to the hierarchy of low-energy phenomena occurring in the solid during its path towards the thermodynamic equilibrium. This framework is explored in a number of prototypical materials with an increasing degree of internal complexity beyond conventional band theory. Among the most remarkable results obtained in this work, we observe crosstalk phenomena between distinct electronic subsystems in MgB2, discover bound excitons coupled to the phonon bath in anatase TiO2, provide a selective and quantitative estimate of the electron-phonon coupling in La2CuO4, reveal precursor superconducting effects in NdBa2Cu3O(7-ÎŽ) and unravel a phonon-mediated mechanism behind the magnetic order melting in the multiferroic TbMnO3.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH7432.pdf

Type

N/a

Access type

restricted

License Condition

copyright

Size

22.25 MB

Format

Adobe PDF

Checksum (MD5)

088a9199242ceda4551786152c93a4ee

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés