Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Pressure dependence of the structure and electronic properties of Sr3Ir2O7
 
research article

Pressure dependence of the structure and electronic properties of Sr3Ir2O7

Donnerer, C.
•
Feng, Z.
•
Vale, J. G.
Show more
2016
Physical Review B

We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovskite bilayers. As the positions of the oxygen atoms could not be reliably refined from the data, we use density functional theory (local-density approximation+U+spin orbit) to optimize the crystal structure and to elucidate the electronic and magnetic properties of Sr3Ir2O7 at high pressure. In the low-pressure tetragonal phase, we find that the in-plane rotation of the IrO6 octahedra increases with pressure. The calculations further indicate that a bandwidth-driven insulator-metal transition occurs at similar to 20 GPa, along with a quenching of the magnetic moment. In the high-pressure monoclinic phase, structural optimization resulted in complex tilting and rotation of the oxygen octahedra and strongly overlapping t(2g) and e(g) bands. The t(2g) bandwidth renders both the spin-orbit coupling and electronic correlations ineffectual in opening an electronic gap, resulting in a robust metallic state for the high-pressure phase of Sr3Ir2O7.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevB.93.174118.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.86 MB

Format

Adobe PDF

Checksum (MD5)

856ef8af4fdf23e36282bbadcf669917

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés