Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Deep learning analysis applied to multi-parametric advanced MRI shows higher myelin content and neurite density in juxtacortical lesions compared to periventricular lesions
 
conference paper

Deep learning analysis applied to multi-parametric advanced MRI shows higher myelin content and neurite density in juxtacortical lesions compared to periventricular lesions

Lu, P. -J.
•
Rahmanzadeh, R.
•
Galbusera, R.
Show more
September 1, 2019
Multiple Sclerosis Journal
35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS
  • Details
  • Metrics
Type
conference paper
Web of Science ID

WOS:000485303101085

Author(s)
Lu, P. -J.
Rahmanzadeh, R.
Galbusera, R.
Odry, B.
Weigel, M.
La Rosa, F.
Cuadra, M. Bach  
Nguyen, T.
Wang, Y.
Daducci, A.  
Show more
Date Issued

2019-09-01

Publisher

SAGE PUBLICATIONS LTD

Publisher place

London

Published in
Multiple Sclerosis Journal
Volume

25

Start page

241

End page

242

Subjects

Clinical Neurology

•

Neurosciences

•

Neurosciences & Neurology

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTS5  
Event nameEvent placeEvent date
35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS

Stockholm, SWEDEN

Sep 11-13, 2019

Available on Infoscience
October 12, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/161984
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés