Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Stiff and Deformable Quasicrystalline Architected Materials
 
preprint

Stiff and Deformable Quasicrystalline Architected Materials

Rosa, Matheus I. N.
•
Karapiperis, Konstantinos  
•
Radi, Kaoutar
Show more
September 19, 2024

Architected materials achieve unique mechanical properties through precisely engineered microstructures that minimize material usage. However, a key challenge of low-density materials is balancing high stiffness with stable deformability up to large strains. Current microstructures, which employ slender elements such as thin beams and plates arranged in periodic patterns to optimize stiffness, are largely prone to instabilities, including buckling and brittle collapse at low strains. This challenge is here addressed by introducing a new class of aperiodic architected materials inspired by quasicrystalline lattices. Beam networks derived from canonical quasicrystalline patterns, such as the Penrose tiling in 2D and icosahedral quasicrystals in 3D, are shown to create stiff, stretching-dominated topologies with non-uniform force chain distributions, effectively mitigating the global instabilities observed in periodic designs. Numerical and experimental results confirm the effectiveness of these designs in combining stiffness and stable deformability at large strains, representing a significant advancement in the development of low-density metamaterials for applications requiring high impact resistance and energy absorption. Our results demonstrate the potential of deterministic quasi-periodic topologies to bridge the gap between periodic and random structures, while branching towards uncharted territory in the property space of architected materials.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2409.12652v1.pdf

Type

Main Document

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

CC BY-NC-SA

Size

11.14 MB

Format

Adobe PDF

Checksum (MD5)

8ef2c7da679ff0464fe690352e580c39

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés