Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. Protocols for Visualizing Horizontal Gene Transfer in Gram-Negative Bacteria Through Natural Competence
 
book part or chapter

Protocols for Visualizing Horizontal Gene Transfer in Gram-Negative Bacteria Through Natural Competence

Blokesch, Melanie  
McGenity, Terry J.
•
Timmis, Kenneth N.
Show more
2015
Hydrocarbon and Lipid Microbiology Protocols

Horizontal gene transfer (HGT) is widespread in bacteria and archaea and plays a significant role in prokaryotic evolution. One mode of HGT is natural competence for genetic transformation, which allows the organism to take up free DNA from its surroundings and incorporate this DNA into its own genome. Natural transformation has been studied in many diverse organisms since its discovery in the 1920s; however, the majority of these studies were primarily based on population-wide methods. Recent advances in biological imaging, including the use of fluorescent proteins, have revolutionized the field of microbiology, and such imaging techniques allow for the study of important phenomena at the single-cell level. Here, we describe the visualization of the DNA uptake process in naturally competent Vibrio cholerae cells. More precisely, the protocol below provides instructions for the genetic engineering of V. cholerae to generate strains carrying translational fusion constructs between important competence/recombination and fluorescent proteins. Moreover, detailed steps for live cell time-lapse microscopy imaging of these strains under competence-inducing conditions are discussed for direct or indirect visualization of the DNA uptake process.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cover.jpg

Access type

openaccess

Size

18.13 KB

Format

JPEG

Checksum (MD5)

54cd3aa1f98ecc2769b3e505a4bacede

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés