Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Measurement and Analysis of Single-Hop Delay on an IP Backbone Network
 
research article

Measurement and Analysis of Single-Hop Delay on an IP Backbone Network

Papagiannaki, Konstantina
•
Moon, Sue
•
Fraleigh, Chuck
Show more
2003
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

We measure and analyze the single-hop packet delay through operational routers in the Sprint Internet protocol (IP) backbone network. After presenting our delay measurements through a single router for OC-3 and OC-12 link speeds, we propose a methodology to identify the factors contributing to single-hop delay. In addition to packet processing, transmission, and queueing delay at the output link, we observe the presence of very large delays that cannot be explained within the context of a first-in first-out output queue model. We isolate and analyze these outliers. Results indicate that there is very little queueing taking place in Sprint’s backbone. As link speeds increase, transmission delay decreases and the dominant part of single-hop delay is packet processing time. We show that if a packet is received and transmitted on the same linecard, it experiences less than 20 s of delay. If the packet is transmitted across the switch fabric, its delay doubles in magnitude. We observe that processing due to IP options results in single-hop delays in the order of milliseconds. Milliseconds of delay may also be experienced by packets that do not carry IP options. We attribute those delays to router idiosyncratic behavior that affects less than 1% of the packets. Finally, we show that the queueing delay distribution is long-tailed and can be approximated with aWeibull distribution with the scale parameter a = 0.5 and the shape parameter b = 0.6 to 0.82.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PapagiannakiMFTD03.pdf

Access type

openaccess

Size

680.81 KB

Format

Adobe PDF

Checksum (MD5)

cc3120a5458c7f9ff41935adf1a62a2b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés