Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Spectral Properties and Stability of Self-Similar Wave Maps
 
doctoral thesis

Spectral Properties and Stability of Self-Similar Wave Maps

Donninger, Roland  
2007

In this thesis the Cauchy problem and in particular the question of singularity formation for co--rotational wave maps from 3+1 Minkowski space to the three--sphere $S^3$ is studied. Numerics indicate that self--similar solutions of this model play a crucial role in dynamical time evolution. In particular, it is conjectured that a certain solution $f_0$ defines a universal blow up pattern in the sense that the future development of a large set of generic blow up initial data approaches $f_0$. Thus, singularity formation is closely related to stability properties of self--similar solutions. In this work, the problem of linear stability is studied by functional analytic methods. In particular, a complete spectral analysis of the perturbation operators is given and well--posedness of the linearized Cauchy problem is proved by means of semigroup theory and, alternatively, the functional calculus for self--adjoint operators. These results lead to growth estimates which provide information on the stability of self--similar wave maps. Finally, convergence properties of $f_n$ for large $n$ and the spectra of the corresponding perturbation operators are investigated. The thesis is intended to be self--contained as far as possible, i.e. all the mathematical requirements are carefully introduced, including proofs for many results which could be found elsewhere.

  • Details
  • Metrics
Type
doctoral thesis
Author(s)
Donninger, Roland  
Advisors
Aichelburg, Peter C.
Date Issued

2007

Publisher

University of Vienna

EPFL units
PDE  
Available on Infoscience
May 23, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/67735
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés