Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes
 
research article

Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes

Zhang, Jingqing
•
Boghossian, Ardemis A.  
•
Barone, Paul W.
Show more
2011
Journal of the American Chemical Society

We report the selective detection of single nitric oxide (NO) mols. using a specific DNA sequence of d(AT)15 oligonucleotides, adsorbed to an array of near-IR fluorescent semiconducting single-walled carbon nanotubes (AT15-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)15 imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alc. enables no response to nitric oxide, but exhibits fluorescent enhancement to other mols. in the tested library. For AT15-SWNT, a stepwise fluorescence decrease is obsd. when the nanotubes are exposed to NO, reporting the dynamics of single-mol. NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the max. likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estd. rate consts. is less than 5% under our exptl. conditions, allowing for calibration using a series of NO concns. As expected, the adsorption rate is found to be linearly proportional to NO concn., and the intrinsic single-site NO adsorption rate const. is 0.001 s-1 μM NO-1. The ability to detect nitric oxide quant. at the single-mol. level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chem. signaling, as well as medical diagnostics for inflammation. [on SciFinder(R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja1084942
Author(s)
Zhang, Jingqing
Boghossian, Ardemis A.  
Barone, Paul W.
Rwei, Alina
Kim, Jong-Ho
Lin, Dahua
Heller, Daniel A.
Hilmer, Andrew J.
Nair, Nitish
Reuel, Nigel F.
Show more
Date Issued

2011

Published in
Journal of the American Chemical Society
Volume

133

Start page

567

End page

581

Subjects

nitric oxide detection DNA IR fluorescence carbon nanotube

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LNB  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111852
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés