Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Benchmarking of hydroelectric stochastic risk management models using financial indicators
 
conference paper

Benchmarking of hydroelectric stochastic risk management models using financial indicators

Iliadis, Niko A.
•
Pereira, Mario V. F.
•
Granville, Sergio
Show more
2005
2006 IEEE Power Engineering Society General Meeting
IEEE Power Engineering Society General Meeting

The objective of this paper is to present the operating and hedging analysis of a hydroelectric system in a non-hydro dominated market using a specifically-developed tool for operating and contracting decisions. Hydropower companies are likely to face stochastic inflows, spot prices, and forward prices, during their operation. The objective of the tool is to maximize expected revenues from spot and forward market trading, considering suitable indicators of the company risk aversion. We benchmark the implemented risk indicator of required Minimum Revenues in the optimization tool using financial risk indicators, such as Value at Risk, Conditional Value at Risk, and the Risk Premium of a Utility function. This portfolio management problem, which includes physical and financial assets, is formulated as a stochastic revenue maximization problem under a specified risk aversion constraint. The company risk aversion is apprehended by penalizing reservoir operation and derivative instruments contracting decisions policies that lead to financial performances that are violating the required Minimum Revenues at the end of a predefined profit period. A hybrid Stochastic Dynamic Programming (SDP) / Stochastic Dual Dynamic Programming (SDDP) formulation is adopted to solve this large-scale optimization problem.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

v7 pes_2006_EPFL.pdf

Access type

openaccess

Size

243.24 KB

Format

Adobe PDF

Checksum (MD5)

0eae604280b8d1a90ec571a523040779

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés