Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption
 
research article

Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption

Lissek, Hervé  
•
Boulandet, Romain  
•
Fleury, Romain  
2011
The Journal of the Acoustical Society of America

The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks (“shunts”) with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a 1-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

12E3569707.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

760.36 KB

Format

Adobe PDF

Checksum (MD5)

42a8bcdb34dfe13293b79cc806fa4a7f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés