Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Polyphosphate - a key biopolymer in aerobic granular sludge technology
 
conference poster not in proceedings

Polyphosphate - a key biopolymer in aerobic granular sludge technology

Adler, Aline Sondra  
•
Gelb, Arnaud  
•
Maillard, Caroline  
Show more
2016
Annual Conference 2016 of the Association for General and Applied Microbiology (VAAM2016)

Polyphosphate is the key biopolymer in wastewater treatment (WWT) processes applying enhanced biological phosphorus removal (EBPR) by polyphosphate-accumulating organisms (PAO). Alternating anaerobic (no oxygen and no nitrate) and aerobic phases is used to promote a net phosphorus removal from the wastewater as PAO are capable to take up and store phosphate as intracellular polyphosphate during the aerobic growth phase. In the anaerobic phase, PAO replenish their carbon and energy source in form of polyhydroxyalkanoates (PHA) from volatile fatty acids (VFA) present or formed in the wastewater. The energy and reducing equivalents needed to form PHA come from glycogen and polyphosphate, the polymers that are replenished during the aerobic phase. A few PAO have been already identified, among which Candidatus Accumulibacter phosphatis is a major player in WWT microbial communities enriched with VFA. However, depending on the carbon source the microbial community can strongly fluctuate and other PAO might play a major role in phosphorus removal. We are studying the dynamics of microbial communities in lab-scale aerobic granular sludge sequencing batch reactors subjected to changes of carbon source going from simple VFA to a mixture of VFA, glucose and amino acids. Both metagenomic approaches targeting polyphosphate kinase (ppk) genes and functional analysis of PAO using fluorescence techniques staining the polyphosphate polymer allow us to investigate the key metabolic genes in the synthesis of polyphosphate and expand the knowledge on the diversity of PAO in such engineered systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ISBP2016_Abstract_Final.docx

Access type

openaccess

Size

13.19 KB

Format

Microsoft Word XML

Checksum (MD5)

7983bd8f1f6564ca21d02edfc105a638

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés