Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On identifying the non-linear dynamics of a hovercraft using an end-to-end deep learning approach
 
conference paper

On identifying the non-linear dynamics of a hovercraft using an end-to-end deep learning approach

Schwan, R.  
•
Schmid, N.  
•
Chassaing, E.  
Show more
Rivera, Daniel E.
July 1, 2024
20 IFAC Symposium on System Identification

We present the identification of the non-linear dynamics of a novel hovercraft design, employing end-to-end deep learning techniques. Our experimental setup consists of a hovercraft propelled by racing drone propellers mounted on a lightweight foam base, allowing it to float and be controlled freely on an air hockey table. We learn parametrized physics-inspired nonlinear models directly from data trajectories, leveraging gradient-based optimization techniques prevalent in machine learning research. The chosen model structure allows us to control the position of the hovercraft precisely on the air hockey table. We then analyze the prediction performance and demonstrate the closed-loop control performance on the real system.

  • Details
  • Metrics
Type
conference paper
DOI
10.1016/j.ifacol.2024.08.543
Scopus ID

2-s2.0-85205793682

Author(s)
Schwan, R.  

École Polytechnique Fédérale de Lausanne

Schmid, N.  

École Polytechnique Fédérale de Lausanne

Chassaing, E.  

École Polytechnique Fédérale de Lausanne

Samaha, K.  

École Polytechnique Fédérale de Lausanne

Jones, C. N.  

École Polytechnique Fédérale de Lausanne

Editors
Rivera, Daniel E.
Date Issued

2024-07-01

Publisher

Elsevier B.V.

Series title/Series vol.

IFAC-PapersOnLine; 58

ISSN (of the series)

2405-8963

2405-8971

Issue

15

Start page

289

End page

294

Subjects

Air hockey

•

Hovercraft

•

Learning for control

•

Nonlinear system identification

•

Parametric modeling

•

Physics-inspired modeling

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LA3  
Event nameEvent acronymEvent placeEvent date
20 IFAC Symposium on System Identification

Boston, United States

2024-07-17 - 2024-07-19

FunderFunding(s)Grant NumberGrant URL

Swiss National Science Foundation

51NF40 180545

Available on Infoscience
January 26, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/245088
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés