Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-modal MRI
 
conference paper

Decoder-Free Supervoxel GNN for Accurate Brain-Tumor Localization in Multi-modal MRI

Protani, Andrea  
•
De Bosch, Marc Molina Van
•
Giusti, Lorenzo
Show more
Felsner, Lina
•
Küstner, Thomas
Show more
October 1, 2025
Reconstruction and Imaging Motion Estimation, and Graphs in Biomedical Image Analysis - 1st International Workshop, RIME 2025, and 7th International Workshop, GRAIL 2025, Proceedings
1st International Workshop on Reconstruction and Imaging Motion Estimation

Modern vision backbones for 3D medical imaging typically process dense voxel grids through parameter-heavy encoder-decoder structures, a design that allocates a significant portion of its parameters to spatial reconstruction rather than feature learning. Our approach introduces SVGFormer, a decoder-free pipeline built upon a content-aware grouping stage that partitions the volume into a semantic graph of supervoxels. Its hierarchical encoder learns rich node representations by combining a patch-level Transformer with a supervoxel-level Graph Attention Network, jointly modeling fine-grained intra-region features and broader inter-regional dependencies. This design concentrates all learnable capacity on feature encoding and provides inherent, dual-scale explainability from the patch to the region level. To validate the framework’s flexibility, we trained two specialized models on the BraTS dataset: one for node-level classification and one for tumor proportion regression. Both models achieved strong performance, with the classification model achieving a F1-score of 0.875 and the regression model a MAE of 0.028, confirming the encoder’s ability to learn discriminative and localized features. Our results establish that a graph-based, encoder-only paradigm offers an accurate and inherently interpretable alternative for 3D medical image representation.

  • Details
  • Metrics
Type
conference paper
DOI
10.1007/978-3-032-06103-4_16
Scopus ID

2-s2.0-105019649100

Author(s)
Protani, Andrea  

EPFL

De Bosch, Marc Molina Van

Organisation Européenne pour la Recherche Nucléaire

Giusti, Lorenzo

Organisation Européenne pour la Recherche Nucléaire

Silva, Heloisa Barbosa Da

Organisation Européenne pour la Recherche Nucléaire

Cacace, Paolo

Organisation Européenne pour la Recherche Nucléaire

Aillet, Albert Sund

Organisation Européenne pour la Recherche Nucléaire

Hummel, Friedhelm Christoph  

EPFL

Serio, Luigi

Organisation Européenne pour la Recherche Nucléaire

Editors
Felsner, Lina
•
Küstner, Thomas
•
Maier, Andreas
•
Qin, Chen
•
Ahmadi, Seyed-Ahmad
•
Kazi, Anees
•
Hu, Xiaoling
Date Issued

2025-10-01

Publisher

Springer Science and Business Media Deutschland GmbH

Published in
Reconstruction and Imaging Motion Estimation, and Graphs in Biomedical Image Analysis - 1st International Workshop, RIME 2025, and 7th International Workshop, GRAIL 2025, Proceedings
Series title/Series vol.

Lecture Notes in Computer Science; 16150 LNCS

ISSN (of the series)

1611-3349

0302-9743

Start page

162

End page

171

Subjects

Brain Tumor Localization

•

Graph Neural Networks

•

Multi-modal MRI

•

Regression

•

Supervoxel

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
UPHUMMEL  
Event nameEvent acronymEvent placeEvent date
1st International Workshop on Reconstruction and Imaging Motion Estimation

Daejeon, Korea, Republic of

2025-09-27 - 2025-09-27

Available on Infoscience
November 7, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/255659
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés