Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Deep Residual Network for Joint Demosaicing and Super- Resolution
 
conference paper not in proceedings

Deep Residual Network for Joint Demosaicing and Super- Resolution

Zhou, Ruofan  
•
Achanta, Radhakrishna  
•
Süsstrunk, Sabine  
2018
26th Color and Imaging Conference 2018 (CIC26): Color Science and Engineering Systems, Technologies, and Applications

The two classic image restoration tasks, demosaicing and super-resolution, have traditionally always been studied indepen- dently. That is sub-optimal as sequential processing, demosaic- ing and then super-resolution, may lead to amplification of ar- tifacts. In this paper, we show that such accumulation of er- rors can be easily averted by jointly performing demosaicing and super-resolution. To this end, we propose a deep residual net- work for learning an end-to-end mapping between Bayer images and high-resolution images. Our deep residual demosaicing and super-resolution network is able to recover high-quality super- resolved images from low-resolution Bayer mosaics in a single step without producing the artifacts common to such processing when the two operations are done separately. We perform exten- sive experiments to show that our deep residual network achieves demosaiced and super-resolved images that are superior to the state-of-the-art both qualitatively and quantitatively.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CIC26-4.pdf

Access type

openaccess

Size

4.94 MB

Format

Adobe PDF

Checksum (MD5)

49ab4b0a60bf83659b566e845c3a0449

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés