Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. DNA Transport across the Outer and Inner Membranes of Naturally Transformable Vibrio cholerae Is Spatially but Not Temporally Coupled
 
research article

DNA Transport across the Outer and Inner Membranes of Naturally Transformable Vibrio cholerae Is Spatially but Not Temporally Coupled

Seitz, Patrick
•
Blokesch, Melanie  
2014
mBio

The physiological state of natural competence for transformation allows certain bacteria to take up free DNA from the environment and to recombine such newly acquired DNA into their chromosomes. However, even though conserved components that are required to undergo natural transformation have been identified in several naturally competent bacteria, our knowledge of the underlying mechanisms of the DNA uptake process remains very limited. To better understand these mechanisms, we investigated the competence-mediated DNA transport in the naturally transformable pathogen Vibrio cholerae. Previously, we used a cell biology-based approach to experimentally address an existing hypothesis, which suggested the competence protein ComEA plays a role in the DNA uptake process across the outer membrane of Gram-negative bacteria. Here, we extended this knowledge by investigating the dynamics of DNA translocation across both membranes. More precisely, we indirectly visualized the transfer of the external DNA from outside the cell into the periplasm followed by the shuttling of the DNA into the cytoplasm. Based on these data, we conclude that for V. cholerae, the DNA translocation across the outer and inner membranes is spatially but not temporally coupled.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mBio-2014-Seitz-.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.43 MB

Format

Adobe PDF

Checksum (MD5)

26e02cbba97cd78e240be32ffcc74fe5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés