Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Multi Level Monte Carlo Methods for Uncertainty Quantification and Robust Design Optimization in Aerodynamics
 
doctoral thesis

Multi Level Monte Carlo Methods for Uncertainty Quantification and Robust Design Optimization in Aerodynamics

Pisaroni, Michele  
2017

The vast majority of problems that arise in aircraft production and operation require decisions to be made in the presence of uncertainty. An effective and accurate quantification and control of the level of uncertainty introduced in the design phase and during the manufacturing and operation of aircraft vehicles is imperative in order to design robust and risk tolerant systems. Indeed, the geometrical and operational parameters, that characterize aerodynamic systems, are naturally affected by aleatory uncertainties due to the intrinsic variability of the manufacturing processes and the surrounding environment. Reducing the geometrical uncertainties due to manufacturing tolerances can be prohibitively expensive while reducing the operational uncertainties due to atmospheric variability is simply impossible. The quantification of those two type of uncertainties should be available in reasonable time in order to be effective and practical in an industrial environment. The objective of this thesis is to develop efficient and accurate approaches for the study of aerodynamic systems affected by geometric and operating uncertainties. In order to treat this class of problems we first adapt the Multi Level Monte Carlo probabilistic approach to tackle aerodynamic problems modeled by Computational Fluid Dynamics simulations. Subsequently, we propose and discuss different strategies and extensions of the original technique to compute statistical moments, distributions and risk measures of random quantities of interest. We show on several numerical examples, relevant in compressible inviscid and viscous aerodynamics, the effectiveness and accuracy of the proposed approach. We also consider the problem of optimization under uncertainties. In this case we leverage the flexibility of our Multi Level Monte Carlo approach in computing different robust and reliable objective functions and probabilistic constraints. By combining our approach with single and multi objective evolutionary strategies, we show how to optimize the shape of transonic airfoils in order to obtain designs whose performances are as insensitive as possible to uncertain conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH8082.pdf

Access type

openaccess

Size

16.53 MB

Format

Adobe PDF

Checksum (MD5)

ff9a85c8f1f362b830cd2d20d380f8eb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés