Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Study of the twinned dendrite tip shape II: Experimental assessment
 
research article

Study of the twinned dendrite tip shape II: Experimental assessment

Salgado-Ordorica, M. A.
•
Burdet, P.  
•
Cantoni, M.  
Show more
2011
Acta Materialia

The favorable growth kinetics of twinned dendrites can be explained by their complex morphology, multiple side branching mechanisms, growth undercooling and tip morphology. Three models were proposed for the twinned dendrite tip shape: (i) a grooved tip satisfying the Smith condition at the triple line; (ii) a doublon, i.e. a double-tip dendrite that grows with a narrow and deep liquid channel in its center; and (iii) a pointed (or edgy) tip, with consideration of the solid-liquid interfacial energy anisotropy. In the first part of this work, phase field simulations of half a twinned dendrite with an appropriate boundary condition to reproduce the Smith condition supported the doublon conjecture, with a narrow liquid channel ending its solidification with the formation of small liquid droplets. In this part, experimental observations of twinned dendrite tips reveal the presence of a small, but well-defined, groove, thus definitely eliminating the edged tip hypothesis. Focused ion beam nanotomography and energy-dispersive spectroscopy chemical analysis in a transmission electron microscope reveal the existence of a positive solute gradient in a region localized within 2 μm around the twin plane. In Al-Zn specimens, small particles aligned within the twin plane further support the doublon conjecture and the predicted formation of small liquid droplets below the doublon root. © 2011 Acta Materialia Inc.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SalgadoBurdetCantoniRappaz_online.pdf

Access type

openaccess

Size

1.08 MB

Format

Adobe PDF

Checksum (MD5)

1fd9957f8a7626e560d82dee2355c846

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés