Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Feedback-free microfluidic oscillator with impinging jets
 
research article

Feedback-free microfluidic oscillator with impinging jets

Bertsch, Arnaud  
•
Bongarzone, Alessandro  
•
Duchamp, Margaux  
Show more
May 13, 2020
Physical Review Fluids

The present paper describes a microfluidic oscillator based on facing impinging jets and operating in laminar flow conditions. Using appropriate microchannel configurations, pulsatile liquid flows are generated at the microscale from steady and equal inlet flow conditions and without moving parts or external stimuli. An experimental campaign has been carried out, using oscillator structures manufactured in silicon using conventional microfabrication techniques. This allowed us to study in detail the impact of the main geometric parameters of these structures on the oscillation frequency. The observed range of regular oscillations was found to depend on the geometry of the output channels, with highly regular oscillations occurring over a very large range of Reynolds numbers (Re) when an expansion of the output channel is added. The evolution of the self-oscillating frequency was shown to be dependent on the distance separating the impinging jets and on the average speed of the jets. Direct numerical simulations have been performed using a spectral element method. The computed dye concentration fields and nondimensional self-oscillation frequencies compare well with the experiments. The simulations enable a detailed characterization of the self-oscillation phenomenon in terms of pressure and velocity fields.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevFluids.pdf

Type

Publisher's Version

Version

Published version

Access type

restricted

Size

15.02 MB

Format

Adobe PDF

Checksum (MD5)

72b697ccdeb48c9aa9ca6be435cc4ea5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés