Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Keypoint Promptable Re-Identification
 
conference paper

Keypoint Promptable Re-Identification

Somers, Vladimir  
•
Alahi, Alexandre  
•
Vleeschouwer, Christophe De
Leonardis, Aleš
•
Ricci, Elisa
Show more
2025
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
18th European Conference on Computer Vision

Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance. While many studies have tackled occlusions caused by objects, multi-person occlusions remain less explored. In this work, we identify and address a critical challenge overlooked by previous occluded ReID methods: the Multi-Person Ambiguity (MPA) arising when multiple individuals are visible in the same bounding box, making it impossible to determine the intended ReID target among the candidates. Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target. Since promptable re-identification is an unexplored paradigm, existing ReID datasets lack the pixel-level annotations necessary for prompting. To bridge this gap and foster further research on this topic, we introduce Occluded PoseTrack-ReID, a novel ReID dataset with keypoints labels, that features strong inter-person occlusions. Furthermore, we release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches on various occluded scenarios. Our code, dataset and annotations are available at https://github.com/VlSomers/keypoint_promptable_reidentification.

  • Details
  • Metrics
Type
conference paper
DOI
10.1007/978-3-031-72986-7_13
Scopus ID

2-s2.0-85208596715

Author(s)
Somers, Vladimir  

École Polytechnique Fédérale de Lausanne

Alahi, Alexandre  

École Polytechnique Fédérale de Lausanne

Vleeschouwer, Christophe De

Université Catholique de Louvain

Editors
Leonardis, Aleš
•
Ricci, Elisa
•
Roth, Stefan
•
Russakovsky, Olga
•
Sattler, Torsten
•
Varol, Gül
Date Issued

2025

Publisher

Springer Science and Business Media Deutschland GmbH

Published in
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
Series title/Series vol.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 15137 LNCS

ISSN (of the series)

1611-3349

0302-9743

Start page

216

End page

233

Subjects

Person Re-Identification

•

Vision Prompting

•

 Pose Tracking

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
VITA  
Event nameEvent acronymEvent placeEvent date
18th European Conference on Computer Vision

Milan, Italy

2024-09-29 - 2024-10-04

FunderFunding(s)Grant NumberGrant URL

FNRS

Available on Infoscience
January 26, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/245052
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés