Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Are Cloud FPGAs Really Vulnerable to Power Analysis Attacks?
 
conference paper

Are Cloud FPGAs Really Vulnerable to Power Analysis Attacks?

Glamocanin, Ognjen  
•
Coulon, Louis
•
Regazzoni, Francesco
Show more
March 9, 2020
Proceedings Of The 2020 Design, Automation & Test In Europe Conference & Exhibition (Date 2020)
Design, Automation and Test in Europe (DATE)

Recent works have demonstrated the possibility of extracting secrets from a cryptographic core running on an FPGA by means of remote power analysis attacks. To mount these attacks, an adversary implements a voltage fluctuation sensor in the FPGA logic, records the power consumption of the target cryptographic core, and recovers the secret key by running a power analysis attack on the recorded traces. Despite showing that the power analysis could also be performed without physical access to the cryptographic core, these works were mostly carried out on dedicated FPGA boards in a controlled environment, leaving open the question about the possibility to successfully mount these attacks on a real system deployed in the cloud. In this paper, we demonstrate, for the first time, a successful key recovery attack on an AES cryptographic accelerator running on an Amazon EC2 F1 instance. We collect the power traces using a delay-line based voltage drop sensor, adapted to the Xilinx Virtex Ultrascale+ architecture used on Amazon EC2 F1, where CARRY8 blocks do not have a monotonic delay increase at their outputs. Our results demonstrate that security concerns raised by multitenant FPGAs are indeed valid and that countermeasures should be put in place to mitigate them.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Glamocanin20 Are cloud FPGAs really vulnerable to power analysis attacks.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

Copyright

Size

946.8 KB

Format

Adobe PDF

Checksum (MD5)

26f98e959e2caaefd92ba30dac2a017c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés