Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A spiro-type self-assembled hole transporting monolayer for highly efficient and stable inverted perovskite solar cells and modules
 
research article

A spiro-type self-assembled hole transporting monolayer for highly efficient and stable inverted perovskite solar cells and modules

Zhang, Xianfu
•
Li, Botong
•
Zhang, Shaochen
Show more
November 27, 2024
Energy & Environmental Science

Self-assembled monolayers (SAMs) have significantly contributed to the advancement of hole transporting materials (HTMs) for inverted perovskite solar cells (PSCs). However, uneven distribution of SAMs on the substrate largely decreases the PSC performance, especially for large-scale devices. Herein, the first spiro-type SAM, termed 4PA-spiro, with an orthogonal spiro[acridine-9,9′-fluorene] as the skeleton and phosphonic acid as the anchoring group were proposed. Compared to the reference 4PACz, the twisted configuration with larger steric hindrance of 4PA-spiro inhibited the intermolecular aggregation, enabling a uniform and homogeneous anchoring on the substrate. Moreover, the suitable highest occupied molecular orbital (HOMO) level of 4PA-spiro is beneficial in promoting hole extraction and reducing charge non-radiative recombination. As a result, compared to 4PACz with a power conversion efficiency (PCE) of 22.10%, the 4PA-spiro-based PSCs exhibited a superior PCE of 25.28% (certified 24.81%, 0.05 cm2), along with excellent long-term stability. More importantly, 4PA-spiro-enabled larger-area PSCs and modules achieved PCEs of 24.11% (1.0 cm2) and 21.89% (29.0 cm2), respectively, one of the highest PCEs for inverted PSC modules, providing an effective SAM candidate for the commercialization of efficient, stable and large-scale inverted PSCs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1039_d4ee01960a.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.77 MB

Format

Adobe PDF

Checksum (MD5)

07b1dbc72dc433da7873751e08aa5aca

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés