Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Energy dissipation in web-flange junctions of pultruded GFRP decks
 
conference paper

Energy dissipation in web-flange junctions of pultruded GFRP decks

Yanes-Armas, Sonia  
•
de Castro San Roman, Julia  
•
Keller, Thomas  
2015
Proceedings of the 20th International Conference on Composite Materials
20th International Conference on Composite Materials

The energy dissipation capacity resulting from progressive cracking of the web-flange junctions (WFJs) of a pultruded GFRP deck system was experimentally investigated. Web-cantilever bending experiments up to failure were performed on two WFJ types (IfO, IcO) with similar geometry and fiber architecture but different initial imperfections. The latter resulted in different load-displacement behaviors (linear and markedly nonlinear up to failure in IfO and IcO, respectively) and failure modes. Failure was governed in both types by through-thickness tension in the tensioned fillet. However, different crack sequences were observed due to the fiber architecture and resulted in an abrupt failure in IfO and a more progressive failure in IcO, in addition to a higher load-bearing capacity of the latter. The total and dissipated energies of the IcO WFJs and their ductility index, defined as the ratio of the dissipated to total energy, were modeled. The ductility index did not significantly increase as from a given displacement. The main energy dissipation mechanism of the IcO WFJs was related to crack development; dissipation through viscoelastic losses was significant only at low deflection levels.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

150701-2219_Yanes-deCastro-Keller.pdf

Access type

openaccess

Size

8.28 MB

Format

Adobe PDF

Checksum (MD5)

6487c37ae1f92a870bcfaf15c425c6d2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés