Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Optical Coherence Correlation Spectroscopy (OCCS)
 
conference presentation

Optical Coherence Correlation Spectroscopy (OCCS)

Broillet, Stéphane  
•
Geissbühler, Stefan  
•
Sato, Akihiro  
Show more
2013
BIOS 2013: Single Molecule Spectroscopy and Superresolution Imaging VI

A classical technique to monitor dynamical processes at the single-molecule level is fluorescence correlation spectroscopy (FCS). However, FCS requires fluorescent labels that are typically limited by photobleaching and saturation. We present a new method, optical coherence correlation spectroscopy (OCCS), based on noble-metal nanoparticles that overcome those photobleaching and saturation limitations. OCCS is a correlation spectroscopy technique based on dark-field optical coherence microscopy (dfOCM), a Fourier domain optical coherence microscopy technique. OCCS is based on the amplified backscattered light caused by diffusing nanoparticles. Due to the interferometric principle of OCCS, several sampling volumes along the optical axis are measured simultaneously with high detection sensitivity. This adds the possibility to assess axial flow, which is similar to a lateral flow measurement in dual-focus fluorescence correlation. Using a mode-locked Ti:Sapphire laser (780nm central wavelength) we performed experiments with nanoparticles down to 30nm in diameter. We present these first experimental results and an associated theoretical fit model allowing the extraction of the particles’ concentrations and diffusion parameters. The experimental determination of the diffusion time and concentration of gold nanoparticles based on this method is presented as a proof of principle and shows the potential of this technique. In the near future, we aim at investigating smaller gold nanoparticles assessing biological phenomena. As a first application we apply this method to membrane receptor interaction using functionalized nanoparticles.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BIOS 2013 Abstract.pdf

Access type

openaccess

Size

161.45 KB

Format

Adobe PDF

Checksum (MD5)

5c594fddbddd8c2ed519ce6fd05939a3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés