Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Alternative method for the quantitative determination of Rashba- and Dresselhaus spin–orbit interaction using the magnetization
 
research article

Alternative method for the quantitative determination of Rashba- and Dresselhaus spin–orbit interaction using the magnetization

Wilde, M A
•
Grundler, D
2013
New Journal of Physics

The quantum oscillatory magnetization M of a two-dimensional electron system in a magnetic field B is found to provide quantitative information on both the Rashba- and Dresselhaus spin-orbit interaction (SOI). This is shown by first numerically solving the model Hamiltonian including the linear Rashba- and Dresselhaus SOI and the Zeeman term in particular in a doubly tilted magnetic field and second evaluating the intrinsically anisotropic magnetization for different directions of the in-plane magnetic field component. The amplitude of specific magnetic quantum oscillations in M(B) is found to be a direct measure of the SOI strength at fields B where SOI-induced Landau level anticrossings occur. The anisotropic M allows one to quantify the magnitude of both contributions as well as their relative sign. The influence of cubic Dresselhaus SOI on the results is discussed. We use realistic sample parameters and show that recently reported experimental techniques provide a sensitivity which allows for the detection of the predicted phenomena. © IOP Publishing and Deutsche Physikalische Gesellschaft.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1367-2630/15/11/115013
Author(s)
Wilde, M A
Grundler, D
Date Issued

2013

Publisher

Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft

Published in
New Journal of Physics
Volume

15

Issue

11

Article Number

115013

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMGN  
Available on Infoscience
July 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/115987
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés