Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Computing the equivalent number of parameters of fixed-interval smoothers
 
conference paper

Computing the equivalent number of parameters of fixed-interval smoothers

Ferrari-Trecate, G.
•
De Nicolao, G.
2001
Proc. 40th IEEE Conference on Decision and Control

The problem of reconstructing an unknown signal from n noisy samples can be addressed by means of non- parametric estimation techniques such as Tikhonov reg- ularization, Bayesian regression and state-space fixed- interval smoothing. The practical use of these ap- proaches calls for the tuning of a regularization param- eter that controls the amount of smoothing they intro- duce. The leading tuning criteria, including Generalized Cross Validation and Maximum Likelihood, involve the repeated computation of the so-called equivalent num- ber of parameters, a normalized measure of the flexi- bility of the nonparametric estimator. The paper de- velops new state-space formulas for the computation of the equivalent number of parameters in O(n) operations. The results are specialized to the case of uniform sam- pling yielding closed-form expressions of the equivalent number of parameters for both linear splines and first- order deconvolution.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/.2001.980717
Author(s)
Ferrari-Trecate, G.
De Nicolao, G.
Date Issued

2001

Published in
Proc. 40th IEEE Conference on Decision and Control
Volume

3

Start page

2905

End page

2910

Note

Orlando (FL), US

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132701
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés