Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Flow structure and grain motion assessments of large river widening in a physical model using ultrasonic Doppler velocity measurements
 
research article

Flow structure and grain motion assessments of large river widening in a physical model using ultrasonic Doppler velocity measurements

Saugy, Jean-Noel  
•
Amini, Azin  
•
De Cesare, Giovanni  
July 1, 2022
Experiments In Fluids

Local river widening aims to reduce the flood risk and enable the self-morphodynamic development of the river. However, a large amount of transported sediments settles due to the flow velocity reduction in the widening. Assessing the flow and the grain motion is therefore a key factor to the sustainability of a local river widening project. The grain motion depends on the ratio between tractive forces and resisting forces, which can be evaluated through the local shear stress. The most common method to estimate shear stress in uniform flows is to determine the shear velocity based on the logarithmic distribution of velocity over depth. This involves knowing the velocity profile and in turn the flow structure. In the present study, morphodynamic tests are conducted to explore the hydrodynamics and the grain motion of a local river widening in the framework of the 3rd correction of the Rhone River, the largest flood protection project in Switzerland so far. The ultrasonic velocity profiler method is used to measure velocity profiles at two selected cross-sections. The obtained velocity profiles allow for the assessment of local shear stress on the mobile riverbed. The results show a non-uniform distribution of the flow and the shear stresses. The flow conditions at the preferential channel are more favorable to grain motion compared to those at the river's edges. [GRAPHICS] .

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00348-022-03430-9.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.16 MB

Format

Adobe PDF

Checksum (MD5)

8c63eaec440764006ced1c10b69f2fcf

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés