Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Micro-Uav with the Capability of Direct Georeferencing
 
conference paper

A Micro-Uav with the Capability of Direct Georeferencing

Rehak, Martin  
•
Mabillard, Romain
•
Skaloud, Jan  
2013
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
UAV-g

This paper presents the development of a low cost UAV (Unmanned Aerial Vehicle) with the capability of direct georeferencing. The advantage of such system lies in its high maneuverability, operation flexibility as well as capability to acquire image data without the need of establishing ground control points (GCPs). Moreover, the precise georeferencing offers an improvement in the final mapping accuracy when employing integrated sensor orientation. Such mode of operation limits the number and distribution of GCPs, which in turns save time in their signalization and surveying. Although the UAV systems feature high flexibility and capability of flying into areas that are inhospitable or inaccessible to humans, the lack of precision in positioning and attitude estimation on-board decrease the gained value of the captured imagery and limits their mode of operation to specific configurations and need of groundreference. Within a scope of this study we show the potential of present technologies in the field of position and orientation determination on a small UAV. The hardware implementation and especially the non-trivial synchronization of all components is clarified. Thanks to the implementation of a multi-frequency, low power GNSS receiver and its coupling with redundant MEMSIMU, we can attain the characteristic of a much larger systems flown on large carries while keeping the sensor size and weight suitable for MAV operations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

isprsarchives-XL-1-W2-317-2013.pdf

Access type

openaccess

Size

4.93 MB

Format

Adobe PDF

Checksum (MD5)

f7218e6efea47d66a0f8311d0d623c0a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés