Enabling four-arm laparoscopic surgery by controlling two robotic assistants via haptic foot interfaces
Robotic surgery is a promising direction to improve surgeons and assistants’ daily life with respect to conventional surgery. In this work, we propose solo laparoscopic surgery in which two robotic arms, controlled via haptic foot interfaces, assist the task of the hands. Such a system opens the door for simultaneous control of four laparoscopic tools by the same user. Each hand controls a manipulative tool while a foot controls an endoscope/camera and another controls an actuated gripper. In this scenario, the surgeon and robots need to work collaboratively within a concurrent workspace, while meeting the precision demands of surgery. To this end, we propose a control framework for the robotic arms that deals with all the task- and safety-related constraints. Furthermore, to ease the control through the feet, two assistance modalities are proposed: adaptive visual tracking of the laparoscopic instruments with the camera and grasping assistance for the gripper. A user study is conducted on twelve subjects to highlight the ease of use of the system and to evaluate the relevance of the proposed shared control strategies. The results confirm the feasibility of four-arm surgical-like tasks without extensive training in tasks that involve visual-tracking and manipulation goals for the feet, as well as coordination with both hands. Moreover, our study characterizes and motivates the use of robotic assistance for reducing task load, improving performance, increasing fluency, and eliciting higher coordination during four-arm laparoscopic tasks.
2023
REVIEWED