Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Simultaneous access to high normalized density, current, pressure, and confinement in strongly-shaped diverted negative triangularity plasmas
 
research article

Simultaneous access to high normalized density, current, pressure, and confinement in strongly-shaped diverted negative triangularity plasmas

Paz-Soldan, C.
•
Chrystal, C.
•
Lunia, P.
Show more
September 1, 2024
Nuclear Fusion

Strongly-shaped diverted negative triangularity (NT) plasmas in the DIII-D tokamak demonstrate simultaneous access to high normalized density, current, pressure, and confinement. NT plasmas are shown to exist across an expansive parameter space compatible with high fusion power production, revealing surprisingly good core stability properties that compare favorably to conventional positive triangularity plasmas in DIII-D. Non-dimensionalizing the key parameters, expanded operating spaces featuring edge safety factors below 3, normalized betas above 3, Greenwald density fractions above 1, and high-confinement mode (H-mode) confinement qualities above 1 are observed, even simultaneously, and all with a robustly stable edge free from deleterious edge-localized mode instabilities. Scaling of the confinement time with engineering parameters reveals at least a linear dependence on plasma current although with significant power degradation, both in excess of expected H-mode scalings. These results increase confidence that NT plasmas are a viable approach to realize fusion power and open directions for future detailed study.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1088_1741-4326_ad69a4.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

ca9657ee7a3c618112f16465db87de3d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés