Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multichannel Radiation-Compensated Systems for Temperature and Humidity Monitoring for High Energy Physics Detectors
 
research article

Multichannel Radiation-Compensated Systems for Temperature and Humidity Monitoring for High Energy Physics Detectors

Kapic, Amar  
•
Tsirou, Andromachi
•
Giorgio Verdini, Piero
Show more
2024
IEEE Transactions on Consumer Electronics

Monitoring humidity and temperature in silicon-based high-energy physics (HEP) detectors is indispensable but challenging due to space restrictions, radiation, sub-zero temperatures, and strong magnetic fields. This manuscript presents humidity and temperature monitoring systems with radiation compensation suitable for integration in HEP environments. The humidity monitoring system is based on the MK33-W sensor, which exhibits linear output capacitance change with accumulated fluence. The sensor is insensitive to strong magnetic field variations, and its temperature dependence is compensated using the inverse second-degree calibration function. The designed readout circuit is based on commercial off-the-shelf (COTS) components that are not radiation/magnetic field immune and must be placed far away (~100 m) from the sensor. Passive and active shielding methods are applied to minimize the parasitic capacitance introduced by the cables. Furthermore, the readout unit effectively nullifies the sensor internal parasitic resistance. The Pt1000 Resistance Temperature Detector (RTD) is chosen for temperature monitoring due to its high radiation tolerance. The change in resistance of an RTD is equivalent to 2.3 °C after accumulating a dose of 4 · 1016 protons/cm2 which is the highest expected dose in the HL-LHC experiments after 10 years of operation. A cost-effective, embedded-based solution for a massive-temperature readout system that conditions up to 24 RTDs is proposed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1109_tce.2024.3446895.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.88 MB

Format

Adobe PDF

Checksum (MD5)

7cc40951b056ad6fd4fdc10f1286054e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés