Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deterministic switching of antiferromagnetic spin textures by nonlinear magnons
 
research article

Deterministic switching of antiferromagnetic spin textures by nonlinear magnons

Chen, Jilei
•
Xu, Mingran  
•
Wang, Jinlong
Show more
July 1, 2025
Nature Communications

Antiferromagnetic spin textures, compared to their ferromagnetic counterparts, innately possess high stability with respect to external disturbance and high-frequency dynamics compatible with ultrafast information processing. However, deterministic creation and reconfigurable switching of different antiferromagnetic spin textures have not been realized. Here, we demonstrate room-temperature deterministic switching between three antiferromagnetic textures identified by characteristically different high frequency dynamics in single-crystal hematite (α-Fe2O3). All three states are found to be remarkably stable and fully controllable, as confirmed by 1000 switching cycles and spatially resolved spectroscopy and they may be created by local magnetization switching in the nonlinear excitation regime. The switching to the following stable state requires only one microwave pulse (100 ns) with ultralow energy consumption (1 nJ). Our Brillouin light scattering (BLS) microscopy data reinforces that the detected magnon modes are associated to excitations of domain walls and circular spin textures. The progressive switching between the three distinct states imitates the weighted sum operation in neuromorphic computing, suggesting the possibility of using spin textures in antiferromagnets for information processing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Chen_et_al-2025-Nature_Communications.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.62 MB

Format

Adobe PDF

Checksum (MD5)

ed3d1456050093d000e1d0db41a82f18

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés