Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamics of JET runaway electron beams in D<inf>2</inf>-rich shattered pellet injection mitigation experiments
 
research article

Dynamics of JET runaway electron beams in D2-rich shattered pellet injection mitigation experiments

Sommariva, C.  
•
Pau, A.  
•
Silburn, S.
Show more
October 1, 2024
Nuclear Fusion

The publication provide further insights into the dynamics of JET runaway electron (RE) beams mitigated by D2-rich shattered pellet injection (SPI) (Reux et al 2022 Plasma Phys. Control. Fusion 64 034002). Multi-diagnostic analyses show that mechanisms causing continuous RE losses and energy transfer from hot electrons to cold background plasma can act before the SPI. After the SPI, measurements are compatible with a reduction of the maximum energy and pitch angle of the RE distribution while the population of supra-thermal electrons increases. The RE population growth is likely due to electron avalanche. Dark island-like pattern chains, characterised by an integer poloidal mode number and a certain minor radius, are identified in the JET RE beam synchrotron radiation videos. The synchrotron island dynamics is studied via a newly developed computer vision code (Sommariva and Silburn https://c4science.ch/source/ pSpiPTV/). The radial motion of synchrotron island chains is found to be consistent with the most plausible time evolution of the radial current density profile compatible with both the RE synchrotron videos and the total RE current time trace. Similarly, correlations are identified between the temporal progression of the synchrotron islands poloidal rotation frequency and sudden MHD relaxation events. Loss-of-RE events probably caused by non-linear interactions between synchrotron islands are observed for the first time. Experimental evidences suggest that synchrotron islands are possibly related to the existence of magnetic islands which may lead to the development of new RE beam mitigation strategies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1088_1741-4326_ad6e03.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

6.23 MB

Format

Adobe PDF

Checksum (MD5)

712fe06ca86f52ddbb7f7396bf1d8941

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés