Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite
 
research article

Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite

Pintado, X.
•
Kumpulainen, S.
•
Romero, E.
Show more
June 7, 2023
Geomechanics For Energy And The Environment

Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel.In the KBS-3 type repository, the canisters containing the spent fuel assemblies are surrounded by bentonite buffer. Therefore, it is necessary to understand the bentonite behaviour in shearing conditions for the long-term performance assessment of the canisters. Bentonite shearing could arise, for example, due to potential post-glacial earthquakes.The deviatoric stress at failure and the shear modulus of a compacted Wyoming-type bentonite were measured using different shearing tests. Tests were carried out on unsaturated samples at three laboratories. The shearing tests on unsaturated samples were unconfined and triaxial compression tests, hollow cylinder tests and simple shear tests. Unconfined and triaxial compression tests were also carried out on saturated samples. The failure was quite ductile when tests were carried out with confining pressure.The samples were compacted at different dry densities and degrees of saturation and tested at different confining pressures and strain levels to study their influence on the shear properties. Shear strength and shear modulus were studied based on models that consider the double porosity structure of the bentonites. Previously published triaxial tests and resonant column test results were also included in this study.In combination with these models, several alternatives for the definition of the constitutive stress were checked for the case of bentonite. A novel, approach, involving the results of mercury intrusion porosimetry in estimating the constitutive stress, was introduced.The shear strength calculated by the models showed a good agreement with the measured values. In some cases, unrealistic large tensile stresses were predicted. Furthermore, the models can assess the tendency of the shear modulus as a function of the shear strain, degree of saturation and dry density.& COPY; 2023 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.gete.2023.100468
Web of Science ID

WOS:001019405400001

Author(s)
Pintado, X.
Kumpulainen, S.
Romero, E.
Lloret, A.
Weber, R. C.
Ferrari, A.  
Villar, M. V.
Abed, A.
Solowski, W.
Heino, V.
Date Issued

2023-06-07

Publisher

ELSEVIER

Published in
Geomechanics For Energy And The Environment
Volume

34

Article Number

100468

Subjects

Energy & Fuels

•

Engineering, Geological

•

Geosciences, Multidisciplinary

•

Engineering

•

Geology

•

triaxial test

•

hollow cylinder test

•

simple shear test

•

shear strength

•

suction

•

mercury intrusion porosimetry

•

bishop's stress

•

constitutive stress

•

water-retention behavior

•

hollow cylinder apparatus

•

effective stress

•

hydromechanical behavior

•

swelling behavior

•

unsaturated soils

•

model

•

microstructure

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMS  
Available on Infoscience
July 17, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/199241
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés