Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High precision, high throughput generation of droplets containing single cells
 
research article

High precision, high throughput generation of droplets containing single cells

Zhou, Jiande  
•
Wei, Amaury
•
Bertsch, Arnaud  
Show more
November 21, 2022
Lab On A Chip

The Poisson limit is a major problem for the isolation of single cells in different single-cell technologies and applications. In droplet-based single-cell assays, a scheme that is increasingly popular, the intrinsic randomness during single-cell encapsulation in droplets requires most of the created droplets to be empty, which has a profound impact on the efficiency and throughput of such techniques, and on the predictability of the combinatory droplet assays. Here we present a simple passive microfluidic system overcoming this limitation with unprecedented efficacy, allowing the generation of single-cell droplets for a wide range of operating conditions, with extremely high throughput (more than 22 000 single-cell loaded droplets per minute) and with an extremely low fault ratio (doublets or empty droplets), applicable to any cells and deformable particles. This versatile technique will shift the paradigm of single-cell encapsulation and will impact single-cell sequencing, rare cell isolation, multicellular/bead studies in immunology or cancer biology, etc.

  • Details
  • Metrics
Type
research article
DOI
10.1039/d2lc00841f
Web of Science ID

WOS:000888528800001

Author(s)
Zhou, Jiande  
Wei, Amaury
Bertsch, Arnaud  
Renaud, Philippe  
Date Issued

2022-11-21

Publisher

ROYAL SOC CHEMISTRY

Published in
Lab On A Chip
Volume

22

Issue

24

Start page

4841

End page

4848

Subjects

Biochemical Research Methods

•

Chemistry, Multidisciplinary

•

Chemistry, Analytical

•

Nanoscience & Nanotechnology

•

Instruments & Instrumentation

•

Biochemistry & Molecular Biology

•

Chemistry

•

Science & Technology - Other Topics

•

Instruments & Instrumentation

•

encapsulation

•

flow

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

Available on Infoscience
December 5, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/192927
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés