Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Spectral Measurement and Classification in the Era of Big Data
 
Loading...
Thumbnail Image
conference paper

Spectral Measurement and Classification in the Era of Big Data

Webler, Forrest Simon  
•
Andersen, Marilyne  
November 22, 2021
Proceedings of the Conference CIE 2021
CIE 2021

The measurement and classification of light is essential across many scientific disciplines. Devices used to measure light range from the highly precise scanning spectroradiometers to the more practical compact multichannel filter-array type imaging sensors and the ubiquitous RGB pixel. While there have been numerous successful efforts to reconstruct spectrum from RGB, RGB-to-spectrum reconstruction has historically been limited to natural scenes and other edge cases under strict constraints. However, information theory and recent advances in deep learning have shed new light on the vast amount of redundancy contained within data collected in the natural world, including light. In this paper, we will investigate how analytic methods can help map high dimensional spectra data to a low-dimensional feature space with minimal inductive bias. Through a better understanding of the intrinsic dimension of the data, we can use the features expressed in this representation to exploit regularities and make tasks like data compression, measurement and classification more efficient. The aim of this analysis is to help inform how and when low-dimensional representation of spectra is useful in practice for designing compact sensors as well as for lossy data compression and robust classification.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

OP15-Webler,Forrest.pdf

Type

Postprint

Access type

openaccess

License Condition

CC BY

Size

361.09 KB

Format

Adobe PDF

Checksum (MD5)

16f57bc4295f4ba21aabd5c2c758ca0a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés