Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transport coefficients from equilibrium molecular dynamics
 
research article

Transport coefficients from equilibrium molecular dynamics

Pegolo, Paolo  
•
Drigo, Enrico
•
Grasselli, Federico
Show more
February 14, 2025
Journal of Chemical Physics

The determination of transport coefficients through the time-honored Green-Kubo theory of linear response and equilibrium molecular dynamics requires significantly longer simulation times than those of equilibrium properties while being further hindered by the lack of well-established data-analysis techniques to evaluate the statistical accuracy of the results. Leveraging recent advances in the spectral analysis of the current time series associated with molecular trajectories, we introduce a new method to estimate the full (diagonal as well as off-diagonal) Onsager matrix of transport coefficients from a single statistical model. This approach, based on the knowledge of the statistical distribution of the Onsager-matrix samples in the frequency domain, unifies the evaluation of diagonal (conductivities and viscosities) and off-diagonal (e.g., thermoelectric) transport coefficients within a comprehensive framework, significantly improving the reliability of transport coefficient estimation for materials ranging from molten salts to solid-state electrolytes. We validate the accuracy of this method against existing approaches using benchmark data on molten cesium fluoride and liquid water and conclude our presentation with the computation of various transport coefficients of the Li3PS4 solid-state electrolyte.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

064111_1_5.0249677.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

6.15 MB

Format

Adobe PDF

Checksum (MD5)

a4765c9d2a63bbe858b91b7ac48fb979

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés