Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dielectric Elastomer Actuators for Microfluidics
 
conference poster not in proceedings

Dielectric Elastomer Actuators for Microfluidics

Maffli, Luc  
•
Rosset, Samuel  
•
Shea, Herbert  
2012
Second international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles

One of the goals of microfluidics is to bring a whole laboratory processing chain on a few square centimeters, Lab-On-Chips (LOC). But current LOCs require many heavy and power-consuming off-chip controls like pneumatics, pumps and valves, which keep the small chip bound to the lab. Miniaturized Dielectric Elastomer Actuators (DEA) are excellent candidates to make LOC truly portable, since they combine electrical actuation, large stroke volumes and high output forces. We report on the use of zipping actuation applied to DEAs for an array of 3 mm-size chambers, forming a peristaltic pump. Unlike the traditional actuation mechanism of DEAs that squeezes an elastomer between 2 compliant electrodes, zipping DEAs use electrostatic attraction between a compliant electrode and a rigid one (the sloped chamber walls). A zipping analytical model was developed to predict the actuator's behavior and help for the design (chamber dimensions, silicone type and thickness.). Three chambers connected by an embedded channel were wet-etched into a silicon wafer and subsequently covered by a gold-implanted silicone membrane. Static deflections up to 300 micrometers were measured on chambers with square openings from 1.8 to 2.6 mm on a side in very good agreement with the model, but breakdown occurs before predicted. The design parameters are varied to assess the model and determine the most relevant factors to achieve a fully zipped depth of 525 micrometers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EuroEAP 2012_submission0129.pdf

Access type

openaccess

Size

1.94 MB

Format

Adobe PDF

Checksum (MD5)

46244a29b56b14866ffe071315bd77aa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés