Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Length scales and self-organization in dense suspension flows
 
research article

Length scales and self-organization in dense suspension flows

Düring, Gustavo
•
Lerner, Edan
•
Wyart, Matthieu  
2014
Physical Review E

Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its connection to the observed correlation length, we develop an analogy between suspension flows and the rigidity transition occurring when floppy networks are pulled, a transition believed to be associated with the stress stiffening of certain gels. After deriving the critical properties near the rigidity transition, we show numerically that suspension flows lie close to it. We find that this proximity causes a decoupling between viscosity and the correlation length of velocities ξ, which scales as the length lc characterizing the response to a local perturbation, previously predicted to follow lc∼1/zc-z∼p0.18, where p is the dimensionless particle pressure, z is the coordination of the contact network made by the particles, and zc is twice the spatial dimension. We confirm these predictions numerically and predict the existence of a larger length scale lr∼p with mild effects on velocity correlation and of a vanishing strain scale δγ∼1/p that characterizes decorrelation in flow. © 2014 American Physical Society.

  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevE.89.022305
Author(s)
Düring, Gustavo
Lerner, Edan
Wyart, Matthieu  
Date Issued

2014

Published in
Physical Review E
Volume

89

Issue

2

Article Number

022305

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PCSL  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/130500
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés