Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Seasonal energy storage system based on hydrogen for self sufficient living
 
research article

Seasonal energy storage system based on hydrogen for self sufficient living

Bielmann, M.
•
Vogt, U. F.
•
Zimmermann, M.
Show more
2011
Journal of Power Sources

SELF is a resource independent living and working environment. By on-board renewable electricity generation and storage, it accounts for all aspects of living, such as space heating and cooking as well as providing a purified rainwater supply and wastewater treatment, excluding food supply. Uninterrupted, on-demand energy and water supply are the key challenges. Off-grid renewable power supply fluctuations on daily and seasonal time scales impose production gaps that have to be served by local storage, a function normally fulfilled by the grid. While daily variations only obligate a small storage capacity, requirements for seasonal storage are substantial. The energy supply for SELF is reviewed based on real meteorological data and demand patterns for Zurich, Switzerland. A battery system with propane for cooking serves as a reference for battery-only and hybrid battery/hydrogen systems. In the latter, hydrogen is used for cooking and electricity generation. The analysis shows that hydrogen is ideal for long term bulk energy storage on a seasonal timescale, while batteries are best suited for short term energy storage. Although the efficiency penalty from hydrogen generation is substantial, in off-grid systems, this parameter is tolerable since the harvesting ratio of photovoltaic energy is limited by storage capacity. © 2010 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jpowsour.2010.11.096
Web of Science ID

WOS:000288355100050

Author(s)
Bielmann, M.
Vogt, U. F.
Zimmermann, M.
Zuettel, A.  
Date Issued

2011

Published in
Journal of Power Sources
Volume

196

Issue

8

Start page

4054

End page

4060

Note

Si

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMER  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111871
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés