Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wound healing gene-family expression differences between fetal and foreskin cells used for bioengineered skin substitutes
 
research article

Wound healing gene-family expression differences between fetal and foreskin cells used for bioengineered skin substitutes

Hirt-Burri, Nahtalie
•
Scaletta, Corinne
•
Gerber, Stephan
Show more
2008
Artificial Organs

For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be impli- cated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-b) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-b superfamily genes analyzed by real-time reverse transcription–polymerase chain reaction, three were found to be signifi- cantly different with sixfold up-regulated for TGF-b2, and 3.8-fold for BMP- 6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Artificial-Organ-Nath(2008).pdf

Access type

openaccess

Size

125.66 KB

Format

Adobe PDF

Checksum (MD5)

f7426c30a2980307e8e54257409ab9cc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés