Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Handheld high-throughput plasmonic biosensor using computational on-chip imaging
 
research article

Handheld high-throughput plasmonic biosensor using computational on-chip imaging

Cetin, Arif E.
•
Coskun, Ahmet F.
•
Galarreta, Betty C.
Show more
2014
Light: Science & Applications

We demonstrate a handheld on-chip biosensing technology that employs plasmonic microarrays coupled with a lens-free computational imaging system towards multiplexed and high-throughput screening of biomolecular interactions for point-of-care applications and resource-limited settings. This lightweight and field-portable biosensing device, weighing 60 g and 7.5 cm tall, utilizes a compact optoelectronic sensor array to record the diffraction patterns of plasmonic nanostructures under uniform illumination by a single-light emitting diode tuned to the plasmonic mode of the nanoapertures. Employing a sensitive plasmonic array design that is combined with lens-free computational imaging, we demonstrate label-free and quantitative detection of biomolecules with a protein layer thickness down to 3 nm. Integrating large-scale plasmonic microarrays, our on-chip imaging platform enables simultaneous detection of protein mono-and bilayers on the same platform over a wide range of biomolecule concentrations. In this handheld device, we also employ an iterative phase retrieval-based image reconstruction method, which offers the ability to digitally image a highly multiplexed array of sensors on the same plasmonic chip, making this approach especially suitable for high-throughput diagnostic applications in field settings.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

articles-lsa20143.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.01 MB

Format

Adobe PDF

Checksum (MD5)

119aa0cff3178a1c9938262034eb23ac

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés