Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Deep Learning Model for Chemical Shieldings in Molecular Organic Solids Including Anisotropy
 
research article

A Deep Learning Model for Chemical Shieldings in Molecular Organic Solids Including Anisotropy

Kellner, Matthias  
•
Holmes, Jacob B.  
•
Rodriguez-Madrid, Ruben  
Show more
August 18, 2025
The Journal of Physical Chemistry Letters

Nuclear Magnetic Resonance (NMR) chemical shifts are powerful probes of local atomic and electronic structure that can be used to resolve the structures of powdered or amorphous molecular solids. Chemical shift driven structure elucidation depends critically on accurate and fast predictions of chemical shieldings, and machine learning (ML) models for shielding predictions are being increasingly used as scalable and efficient surrogates for demanding ab initio calculations. However, the prediction accuracies of current ML models still lag behind those of the DFT reference methods they approximate. Here, we introduce ShiftML3, a deep-learning model that improves the accuracy of predictions of isotropic chemical shieldings in molecular solids, and does so while also predicting the full shielding tensor. On experimental benchmark sets, we find root-mean-squared errors with respect to experiment for ShiftML3 that approach those of DFT reference calculations, with RMSEs of 0.53 ppm for 1H, 2.4 ppm for 13C, and 7.2 ppm for 15N, compared to DFT values of 0.49, 2.3, and 5.8 ppm, respectively.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acs.jpclett.5c01819
Web of Science ID

WOS:001552008900001

PubMed ID

40825152

Author(s)
Kellner, Matthias  

École Polytechnique Fédérale de Lausanne

Holmes, Jacob B.  

École Polytechnique Fédérale de Lausanne

Rodriguez-Madrid, Ruben  

École Polytechnique Fédérale de Lausanne

Viscosi, Florian  

École Polytechnique Fédérale de Lausanne

Zhang, Yuxuan  

École Polytechnique Fédérale de Lausanne

Emsley, Lyndon  

École Polytechnique Fédérale de Lausanne

Ceriotti, Michele  

École Polytechnique Fédérale de Lausanne

Date Issued

2025-08-18

Publisher

AMER CHEMICAL SOC

Published in
The Journal of Physical Chemistry Letters
Start page

8714

End page

8722

Subjects

CRYSTAL-STRUCTURE PREDICTION

•

STATE NMR

•

POWDER CRYSTALLOGRAPHY

•

SHIFT

•

C-13

•

SPECTRA

•

FORMS

•

H-1

•

SPECTROSCOPY

•

COMPUTATION

•

Science & Technology

•

Physical Sciences

•

Technology

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
COSMO  
LRM  
FunderFunding(s)Grant NumberGrant URL

Horizon 2020

200020_212046

Swiss National Science Foundation (SNSF)

182892

Swiss National Science Foundation (SNSF)

101001890-FIAMMA

Show more
Available on Infoscience
August 25, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/253391
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés