Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Robust Multi-View Change Detection
 
conference paper

Robust Multi-View Change Detection

Lanza, Alessandro
•
Di Stefano, Luigi
•
Berclaz, Jérôme
Show more
2007
Proceedings of the British Machine Conference
British Machine Vision Conference

We present a multi-view change detection approach aimed at being robust with respect to common “disturbance factors” yielding image changes in realworld applications. Disturbance factors causing “slow” or “fast-and-global” image variations, such as light changes and dynamic adjustments of camera parameters (e.g. auto-exposure and auto-gain control), are dealt with by a proper single-view change detector run independently on each view. The computed change masks are then fused into a “synergy mask” defined into a common virtual top-view, so as to detect and filter-out “fast-and-local” image changes due to physical points lying on the ground surface (e.g. shadows cast by moving objects and light spots hitting the ground surface).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

LanzaSBFF07a.pdf

Access type

openaccess

Size

1.48 MB

Format

Adobe PDF

Checksum (MD5)

435a9acf1839edae4bb18607726bc4a4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés