Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The Distributed Multiple Voting Problem
 
research article

The Distributed Multiple Voting Problem

Bénézit, Florence  
•
Thiran, Patrick  
•
Vetterli, Martin  
2011
IEEE Journal of Selected Topics in Signal Processing

A networked set of agents holding binary opinions does not seem to be able to compute its majority opinion by means of local binary interactions only. However, the majority problem can be solved using two or more bits, instead of one [1]. Pairs of agents asynchronously exchange their states and update them according to a voting automaton. This paper presents binary voting automata as well as solutions to the multiple voting problem, where agents can vote for one candidate among |C| >= 2 candidates and need to determine the majority vote. The voting automata are derived from the pairwise gossip algorithm, which computes averages. In the binary case (|C| = 2), we focus on averages in dimension 1, but in the multiple case (|C| >= 2) we quantize gossip in dimension |C | - 1, which is larger than or equal to 1. We show in particular that a consensus on majority can be reached using 15 possible states (4 bits) for the ternary voting problem, and using 100 possible states (7 bits) for the quaternary voting problem.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

05712150.pdf

Access type

openaccess

Size

1.08 MB

Format

Adobe PDF

Checksum (MD5)

b765063451f81aa4bb60d5c36c9c08cc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés