Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nonlinear intensity dependence in the infrared multiphoton excitation and dissociation of methanol pre-excited to different energies
 
research article

Nonlinear intensity dependence in the infrared multiphoton excitation and dissociation of methanol pre-excited to different energies

Boyarkin, OV  
•
Rizzo, TR  
•
Rueda, D
Show more
2002
The Journal of Chemical Physics

We report quantitative dissociation yields for the reaction CH3OH (v(OH))-->nhnu CH3+OH induced by infrared multiphoton excitation of methanol pre-excited to various levels of the OH stretching vibration (v(OH)=0, 1, 3, 5). The yields are measured by detecting OH using laser induced fluorescence. It is demonstrated that for low levels of pre-excitation (v(OH)=0, 1, 3) there is a substantial nonlinear intensity dependence, as a higher yield is found for self mode-locked CO2 laser pulses (with higher peak intensity) as compared to single mode pulses of the same laser fluence, but lower peak intensity. In contrast, at high levels of preexcitation (v(OH)=5) this nonlinear intensity dependence is absent. Quantitative model calculations are carried out using a case B/case C master equation approach that takes nonlinear intensity dependence into account. The calculations are consistent with the experimental results and confirm the prediction that an important part of the selectivity of the CO2 laser excitation step in infrared laser assisted photofragment spectroscopy of CH3OH is due to this nonlinear intensity dependence. We discuss further consequences of these experimental observations and theoretical predictions, which are also extended to infrared multiphoton excitation of C2H5OH. Infrared (C-O) chromophore band strengths are reported for CH3OH and C2H5OH. (C) 2002 American Institute of Physics.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.1501280
Web of Science ID

WOS:000179205700035

Author(s)
Boyarkin, OV  
Rizzo, TR  
Rueda, D
Quack, M
Seyfang, G
Date Issued

2002

Published in
The Journal of Chemical Physics
Volume

117

Issue

21

Start page

9793

End page

9805

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPM  
Available on Infoscience
December 15, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/221352
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés