Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analysis-aware defeaturing of complex geometries with Neumann features
 
research article

Analysis-aware defeaturing of complex geometries with Neumann features

Antolin Sanchez, Pablo  
•
Chanon, Ondine
October 31, 2023
International Journal For Numerical Methods In Engineering

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error in the solution of a differential problem in which it is defined. In this work, we extend the results from Buffa et al. (Math Models Methods Appl Sci. 2022; 32(02):359-402.) by studying the case of domains containing an arbitrary number of distinct Neumann features, and by performing an analysis on Poisson's, linear elasticity, and Stokes' equations. We introduce a simple, computationally cheap, reliable, and efficient a posteriori estimator of the geometrical defeaturing error. Moreover, we also introduce a geometric refinement strategy that accounts for the defeaturing error: starting from a fully defeatured geometry, the algorithm determines at each iteration step which features need to be added to the geometrical model to reduce the defeaturing error. These important features are then added to the (partially) defeatured geometrical model at the next iteration, until the solution attains a prescribed accuracy. A wide range of two- and three-dimensional numerical experiments are finally reported to illustrate this work.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Numerical Meth Engineering - 2023 - Antolín - Analysis‐aware defeaturing of complex geometries with Neumann features.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.63 MB

Format

Adobe PDF

Checksum (MD5)

818da8882f168566cc82a2c7813a8af0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés